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where 
We consider an isolated difference resonance of the form (2p)v,-(2q)v2= n+E 

(2~) and (2q) are positive integers with (2p)+(2q)>2, n is 0 or an inte- 
ger and /e/<<l. With action-angle variables (Ik,a ), the driving term of this 
resonance in the Hamiltonian takes the form 
(2q)a2+const. 

Ddf1PW2)q cos($), $= (2p)q - 

proportional 
Unlike sum resonances, two action variables I and 12, which are 

to emittances in two directions, are bounded an a 
resonance width will involve the concept of an 

any definition of 
"acceptable" growth in 11 or 12. 

We propose a definition such that inside the resonance width, an initial condi- 
tion of large 12 and very small 11 will lead to,an order of magnitude growth in 
11' With'this definition, the width is indefinite for (2p)=l. An arbitrarily 
small 11 can grow to a sizable fraction of (t/q)12 for any value of 1~1. For 
(2p)=2, the width is proportional to D-(212) . One cannot have resonances for 
(2p)>2 according to this definition, but there is a threshold value of initial 
11 above which 11 will grow by a large factor if IE[ and the invariant quantity 
Ii+-(p/q)12 satisfy a certain relation which will be given analytically. We thus 
propose a definition involving one parameter for (2p)=2 and two for (2p)>2. 
The picture is clearly symmetric in two directions: if the initial 12 is very 
small and 11 large, one simply uses (2q) in place of (2~) to classify the reso- 
nances. 
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SUMMARY 

We consider an isolated difference resonanceof the 
form (2p)vl - (2q)v2 = n + E where (2~) and (2q) are 
positive integers with (2p)+(2q)>2, n is 0 or an inte- 
ger and /~/<<l. With action-angle variables (Ik, ak), 
the driving term of this resonance in the Hamiltonian 
takes the form D*(2Il)p(212)q cos($), @  =(2p)al-(2q)a2 
+const. Unlike sum resonances, two action variables I1 
and 12, which are proportional to emittances in two di- 
rections, are bounded and any definition of resonance 
width will involve the conceptofan "acceptable" growth 
in I1 or 12. We propose a definition such that inside 
the resonance width, an initial condition of large 12 
and very small 11 will lead to an order of magnitude 
growth in Il. With this definition, the width isindef- 
inite for (2p)=l. An arbitrarily small I1 can grow to 
a sizable fraction of (p/q)1 for any value of /E\. For 
(2p)=2, the width is proport$onal to D-(12)9. One can- 
not have resonances for (2p)>2 according to thisdefini- 
tion, but there is a threshold value of initial Ilabove 
which I1 will grow by a large factor if 1~1 ,and the in- 
variant quantity Il+(p/q)I2 satisfy a certain relation 
which will be given analytically. We thus proposea,def- 
inition involving one parameter for (2p)=2 and two for 
(2P)'2. The picture is clearly symmetric in two direc- 
tions: if the initial I2 is very small and I1 large, 
one simply uses (2q) in place of (2~) to classify the 
resonances. 

INTRODUCTION 

It is well-known1 that an isolated differencereso- 
nance of the form (2p)vl - (2q)V2 = n does not lead to 
an instability. The motion is always bounded in both 
directions and, if rE1 and liE2 are emittancesintwo di- 
rections, thequantity El/(2p)+E2/(2q) remains unchanged. 
("Emittance" is commonly used to describe a beam as a 
whole. In this note, we consider each particle to have 
its own emittance.) This invariant quantity is a mani- 
festation of the exchange of energy from onetothe oth- 
er direction which is familiar in the linear coupling, 
(2p)=(2q)=l. Because of this bounded nature of the mo- 
tion, one cannot avoid certain arbitrarinessinthedef- 
inition of resonance width. The purposeofthis note is 
to propose one definition in whichtheconceptofan "ac- 
ceptable" growth in the emittance plays the essential 
role. The definition will clarify, for example, the 
physical maeaning of an "infinite" width which results 
from the Guignard's expression2 when (2p)or (2q)isuni- 
ty and El or E2 approaches zero. The concept of an ac- 
ceptable growth is introduced here primarily because of 
its practical importance. Although themotionisbound- 
ed, an initially very small emittance in one direction, 
say El, may grow to a large value if (p/q).E2 is ini- 
tially very large. For example, in many accelerators, 
one tries to avoid a growth in the vertical emittance 
caused by difference resonances when the horizontal 
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emittance happens to be large. Unlike Guignard's def- 
inition, widths defined here cannot be expressed analyt- 
ically for all combinations of p and q but it is easy 
to evaluate them numerically once the definition is 
clearly understood. A numerical table will be given 
for some combinations of p and q which are likely to be 
of practical interest. 

As common in this type of treatment of nonlinear 
resonances, two approximations are made, one essential 
and the other not so but nevertheless needed to keep 
analytical expressions manageable: 
1) Only one resonance is considered at a time so that 
the treatment is best suited when the tunes are close 
to one particular resonance only. To improve this ap- 
proximation, one must go to the next order in D which 
involves a canonical transformation of the action-angle 
variables. 2) In the action-angle formalism, the 
Hamiltonian can have terms which are independent of the 
angle variables. The tune is then a function of the 
emittances. In deriving the resonance width analyti- 
cally, one ignores such terms for the sake of simplici- 
ty. It is however straightforward to include them for 
evaluating the width numerically and the invariant ex- 
pression Il+(P/q)I2 is unaffected by their 
As has been discussed extensively by Montague 3 

resence. 
for (2~) 

=(2q)=2, phase-independent terms play a significant role 
when one considers the nonlinear beam-beam interactions 
in storage rings. 

ACTION-ANGLE FORMALISM 
AND TWO INVARIANTS 

For a nonlinear difference resonance of the form 
(2p)vl - (2q)w2 = n + E, (2p) & (2q)=positive integers, 
n =0 or an integer and (~l<<l, the resonance-driving 
term in the Hamiltonian in terms of action-angle vari- 
ables (Ik, ak; k=1,2) is 

D~(2Il)p(21~)~ cos($) (1) 
with 4:(2p)al - (2q)a2 + const. The parameter D is 
a function of the multipole field 

'N-l 
'N-1 5 (l/Baja By/axN-l Ix=y=o ; NE(b)+(h) (2) 

and the standard linear machine parameters (gk, $k; k 
=1,2): 

DE 1 
(27T)2N-1 (2p)!(2q)! 

IIda (B;B;) cNml x 

x .i(2P $J, - 2q JI, - ee) (3) 

in which the integral is for the entire ring. The in- 
dependent variable 0 is related to the central path 
length J?,, 8 = R/(average machine radius). Action vari- 
able Ik is essentially the emittance ITEk of a particle, 
7lEk = n(2Ik). It is convenient to define twodimension- 
less quantities u2 and v2 which are proportional to 
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(21~) and (212), respectively, 

2 " = ~u(2D/(</) 1's (2Il)' (4) 

v2 = zv(2D/ jE ps W2), (5) 

a u = (2P) q'/s(2q)q/s, (6) 

cl " = (7.P) Pls(2q)P'/s (7) 

where p'=l-p, q'=l-q and s = p+q-1. Note that the 
quantity D defined by Eq.(3) has the dimension of 
(length)-s. The invariance of El/(Zp) + E2/(2q) is 
equivalent to the invariance of 

Since the Hamiltonian itself is invariant (independent 
of the variable 6), one can derive other invariant ex- 
pressions from linear combinations of the Hamiltonian 
and u2. As the second invariant quantity, we choose 

h 5 u2 + u2pv2q W 

with w E (E/(E~).cos($). For physically meaningful 
motions, both u and v must be non-negative and w must 
lie between -1 and +l. In the previous report4 which 
dealt with sum reonances, w was plotted as a function 
of u2 for a fixed value of 02, different values of x 
giving different curves in (u2,w) space. Here, as we 
are interested in the growth in u2 (which isproportion- 
al to 211) when its initial value is very small, it is 
more convenient to see u vs x, again for a fixed 02. 
Different curves in (X,u2) .space correspond to differ- 
ent 
=x 
two 
-1. 

values of w, the simplest being a straight line u2 
for w=O. For our purpose, it is sufficient to study 
limiting curves, one for w=+l and the other for w= 

Typical behaviors are illustrated in Figs.(A)-(D). 

1. 

RESONANCE WIDTH 

1'0-1) 
According to Guignard,the width is 

Ae 5 21~1 = ~Ds(E~)~//E~ (10) 

for El<<E2 andthisgrows indefinitelyasE1 approaches 
zero. The behavior in (1,~~) spaceshown.in Fig.(A) is 
valid for any value of /EI and the physical meaning of 
an indefinitely growing width is clear from this. An 
arbitrarily small u2(i.e., El) can grow to a sizable 
fraction of the maximum possible value, 02=v2(initial). 
For v2(initial)<<l, the emittance El can increase to 
values at least as large as 

(11) 

For v2(initial)=2, El can become as,large as one-half 
of the mzximum possible value (p/q)E2(initial) for any 
9, i.e., if c2=2, then u2=1 for X=0 and r-l. 

2. pii-q 
The physical interpretation of our definition is 

straightforward for resonances of this type. When the 
initial value of E2 is sufficiently small, a small El 
stays proportionately small as illustrated in Fig.(B). 
Beyond a certain threshold value, the behavior changes 
into the one of Fig.(A) so that an initially very small 
El can grow to a large value as for the previous case, 
(2p)=l. The threshold condition 

can be written in the form 

For (2p)=l, (A) is applicable under any condition. For 
(2p)=2, the picture changes from (8) to (A) as one 
moves from outside to inside the resonance width. For 
(2p)>2, the change is from (B) to (0) to (C) as 1~1 de- 
creases or the initial emittance El+(p/q)E2 increases. 

1~~1 = 4D*(E2);nitial (13) 

showing the relation between the resonance width 
and the initial emittance. In deriving Eq.(13) f!?' 
Eq.(12), it is assumed that the initial value of El is 
much smaller than E2(initial) so that o2 '(u2+v2)init. 
2 v2(initial). This is justified since we are inter- 
ested in the possible growth of El startin 
small value. For a given E2(initial), if 
than 1~~1 (inside the resonance), the emittance El can 
grow at least to the value 

$ (E21initialx (1 - /E/Eoll’q) 

corresponding to 'u2 = c2 - 1 for x=0 and ~-1. This 
quantity approaches the maximum possible value (p/q)E2 
as E approaches zero. Comparing our definition, Eq.(13), 
with the expression given by Guignard, we find that our 
width is exactly twice as large. The fact that this 
ratio two is equal to (2~) is not accidental. As one 
can see in ref. 4, theargumentbased ontheconcept of 
"fixed lines" in (Ik,aR) space leads to a factor (2~)~ 
in the expression of width. Indeed, this factor ap- 
pears in Guignard's formula for the width of sum reso- 
nances (ref. 2, p;76) but the corresponding factor is 
(2~) in his definition of difference resonance width. 

3. 1(2P) ' 2J 
Complex features of theresonancebelonging to this 

class are shown in Figs.(B)-(D). One notices that in 
all these pictures, if the initial value of u2 is suf- 
ficiently small, it'remains small in a proportionate 
manner. In this sense, there is no resonance according 
to our definition. However, in Fig.(C), there is a 
threshold value of initial u2 above which u2 will grow 
by a large factor as in Fig.(A). Fig.(D) shows the 
situation when the character of the coupled motion 
changes qualitatively from that in (B) to the one in 
CC). One may thus modify the strict definition which 
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was used for (2p)=l and 2, and derive the relation be- 

;y;Dp ' and the invariant emittance "q + (p/q)Ez in 
. . 

Inorderto find the inflection point uz in Fig.(D) 
and the corresponding value of U2, one must solve the 
following three equations simultaneously, 

dX/d(u2) = 0, d2X/d(u2)2 = 0 , w  = -1 (15) 

where h is given by Eq. (9). .Thealgebrais elementary 
but rather messy. The solution is 

(oz)s = Jsl(pq) (u~/c$p'("~/c$q'; p'=l-p (16) 
q'=l-q 

with 

Cu~/$) = - P’/(S + Jsqlp), 

(vf$~) = - q'/(s - - Jsplq ) for q # 1, 

= 2/(l+P) for q.= 1 (18) 

One sees that 2 2 u. + "2 = u. as it should be. In order 
to find the resonance width Isol which corresponds to 
Fig.(D), one evaluates ao2S from Eqs.(16)-(18) and 
use the relation 

lEOI- = (+fs) (2D)(ET)s (19) 

where the invariant emittance ET = El + (p/q)E2 should 
be very close to (p/q)(E2)init. As the ,thresholdvalue 
of u 2 above which it can grow by a large factor, one is 
tempted to use the analytic expression Eq.(17), but this 
will be an overestimate. Rather, it should be u2 lying 
on the curve 
of A with uz 

w=+l (call it u$) sharing the same value 
on the curve w=-1. It will be the solu- 

tion of 
2 u+ + “:p(uZ - uy = u; - u:pviq . 

The corresponding value for El, (El)thr , is 

(El)thr = (I+~, *ET (21) 

(20) 

with the same ET as in Eq.(19). Unfortunately. it is 
not possible to express u$ analytically; Tablellists 
numerical values of (u$/u$) as well as of (g/azS>, the 
factor appearing in Eq.(19), for low-order resonances. 

Eqs.(l9) and (21) together with numerical values 
listed in Table 1 specify the threshold condition com- 
pletely. A natural question to follow is: what is the 
relation between E and (El)thr when one is inside the 
resonance, i.e., iT u2 is larger than ~2 ? This is the 
case illustrated in Fig.(C). The point corresponding 
to us of Fig.(D) now satisfies only two conditions, 

dX/d(u2) = 0, w = -1 . (15') 

Once this point is found, one evaluates the correspond- 
ing value of A and, to find (El)thr , u$ must be found 
from 

Table 1. Numerical Factors in Eqs. (19) & (21) 

(2P) (2q) 

3 1 
2 
3 
4 

4 1 
2 
3 
4 

5 1 
2 
3 
4 

(b/up 
1.02 .049 

.89 .029 
1.13 .021 
1.76 .016 
1.07 .14 

.67 .089 

.63 .067 

.77 .054 
1.16 .22 

.56 .16 

.43 -12 

.42 .099 

(u:/7~) 

Clearly it is not possible to have analytical solutions 
for general combinations of p and q but the numerical 
evaluation is not difficult. We will simply mention 
two qualitative features: 
1) If u2 is close to ~2, the change in uz is shown 

to have an approximate dependence 

A(u:/02) = - JA(a2) (22) 

2) For o2 not too close to oi, the relation 

(El);;; *(ET - El)q 2 const. 

seems to be valid for a large range of u2/u2 0' 
This .relation is suggested by the concept of "fixed 
lines" in (Ik, ak) space4 and is used by Guignard 
also. 

Finally, it may be natural to consider the distri- 
bution of particles as a function20f ;wo invariants, X 
and u2, instead of more common 
distribution is given as 

p , v ). If the initial 
f(u2,v )du2dv2 (assuming no 

phase dependence), one can derive the correspondingdis- 
tribution F(X,a2)dhda2. However, in view of the sim- 
plifying.approximations made, this may not be too use- 
ful in practical situations. 
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